Editorial: Current advances and challenges in understanding plant desiccation tolerance
نویسندگان
چکیده
Citation: Moore JP and Farrant JM (2015) Editorial: Current advances and challenges in understanding plant desiccation tolerance. One of the most exciting and gratifying privileges of having edited this research topic on plant desiccation tolerance is that we received papers and reviews on resurrection plant species (particularly angiosperms) covering five continents, almost six, although unfortunately we did not quite get there. We were certainly incredibly fortunate for the kind responses of colleagues in Africa providing us with papers dealing with their own (favorite) particular resurrection plant species and the recent discoveries that they have made. It is with this in mind that we are moving toward a more global understanding of resurrection plants, and angiosperm species in particular, although often referred to as being particularly rich in diversity in southern Africa (Moore et al., 2009). We have noted that more and more studies are being made of resurrection species around the globe, as species are being uncovered in China such as Boea hygrometrica (this research topic, Mitra et al., 2013) and Paraboea rufescens (Huang et al., 2012) both in the Gesneriaceae and in South America Also in Brazil specifically, with Barbacenia purpurea (this research topic, Suguiyama et al., 2014) in the Velloziaeace. It is with this in mind that we are realizing more and more that plant desiccation tolerance in angiosperms is far less uncommon than previously suspected, and certainly has re-evolved as an adaptive feature on all continents (except for the South Pole, but this may well be provisional). We start off our quest for understanding plant desiccation tolerance with the green algae; here we are grateful for the first comprehensive review on this under-studied area, with a contribution from Holzinger and Karstens (2013). It is clear that algal cells were obviously the first " plants " to experience desiccation during land plant evolution. Far from following a simple single strategy, Holzinger and Karstens (2013) show that a variety of strategies appear to be employed to mitigate desiccation in both the Streptophyta and Chlorophyta lineages. We were hoping to include lichens and bryophytes (mosses), but these have been adequately covered in Moore et al. (2009). Our shift into the angiosperms, starts with an unlikely species, Arabidopsis thaliana (Djafi et al., 2013), however much is inferred, developed, tested using the Arabidopsis genetic model. In this case, an important area of angiosperm desiccation tolerance involves signaling (Moore et al., 2009), and …
منابع مشابه
Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques
Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms f...
متن کاملDesiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis
Most higher plants are unable to survive desiccation to an air-dried state. An exception is a small group of vascular angiosperm plants, termed resurrection plants. They have evolved unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and mostly adjust their water content with the relative humidity in the environment. Desiccation tolerance is a complex phenomenon...
متن کاملThe Limits and Frontiers of Desiccation-Tolerant Life1
SYNOPSIS. Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H2O g21 dry ...
متن کاملThe limits and frontiers of desiccation-tolerant life.
Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H(2)O g(-1) dry mass. ...
متن کاملInsights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species
Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants becom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015